他们学校独有的孤本,除了和唐纳森讨论acc猜想,洛叶就喜欢来他们图书馆借阅材料。
“高斯的代数基本定理,斯图默根的个数问题,阿贝尔不可能性定理,卡斯迪朗问题,马尔法蒂问题……”
洛叶饶有兴趣的看着书架上的书籍名字,怎么说呢,普林斯顿的人文学术气息特别浓厚,他们的图书馆收藏的书籍,期刊等也全都属于那种严肃类型的,而斯坦福大学的图书馆似乎要活泼一点,在数学区居然还有趣味数学这样的书收藏。
现在她手边就有一本在《趣说费马大定理》。
费马大定理是业余数学家之王皮埃尔·德·费马在三百多年写的一个著名数学猜想。
费马本身是解析几何的发明者之一,概率论的主要创始人,在微积分上,他的贡献仅次于牛顿和莱布尼茨。
这个猜想本身就是一个很有名的数学故事。
在费马写下这个著名的猜想时,“一个立方数是不能够表示成两个立方数之和的,四次方也同理,将一个高于2次幂的数分解为两个同次幂的数之和都是不可能的。可写成当整数n时,关于x,y,z的方程x^没有正整数解.。”
写完这段话后,他的这张纸要用完了,就又写到,“我有一个对这个命题十分美妙的证明,这里空白太小,写不下。”
他没能写下这个猜想的证明结果,后来欧拉在写给哥德巴赫的信中证明了n=3,后来热尔曼,狄利克雷,加布里尔在那个猜想写下后的两百年后证明了五次幂和七次幂。
希尔伯特把费马大定理比喻为会下蛋的金母鸡。
直到1954年,谷山-志村猜想建立了椭圆曲线和模形式之间的联系,这是费马大定理破解的重要一步,证明了这个猜想就可以证明费马大定理成立,可是最终费马大定理被彻底证明是在1995年,中间又经过了无数的无数的波折。
看完这本书后大概就能认识到数学界大部分的名人,中间还有哥德尔,伽罗瓦,图灵等人当初试图证明这个定理的部分思路,洛叶看的津津有味,尤其是那些最终证明失败的思路,让洛叶觉得十分有借鉴意义。
忽然有人轻声道,“你觉得费马当时是真的想到了证明方式了吗?”
“还是真的是因为写不下而放弃了?”
洛叶抬眼看去,一个身材高大的年轻男生手里捧着一堆书,穿着简单的t恤和牛仔裤,看起来和图书馆内的其他人并没有什么分别,“洛 ,我是亚历山大。”
“斯坦福研究生。”
能在这个区域碰到,而且能一眼认出来洛叶的,恐怕也只有数学专业的了。其实如果洛叶有看数学相关的一些报道,应该能认出来亚历山大,去年和她一起竞争n奖的最大对手,如果没有洛叶,亚历山大已经拿下了这个奖项。
当然,亚历山大本身是很服气这个奖项最终给了洛叶,尤其是在看到了洛叶才引爆了整个数学界的论文后,更认为这个奖项名至实归。
不过他本身也是很想认识她的,只是他一直没有抽出时间去普林斯顿,没有想到会在斯坦福看到洛叶,在认出她来的一刹那,他就决定来打招呼了。
“——我想他当时应该只是有个大概的证明思路。”
对于同行,洛叶是不会过于高冷的。
尤其是是他拿出了自己研究的课题后,洛叶对他的态度更为和缓了一些。亚历山大已经读研究生要一年了,已经开始准备起自己的研究生毕业论文,他选定的课题是正特征三维正极小模型纲领——在对数典范奇点的极小模型纲领做出的研究。
并且对洛叶提出了橄榄枝——他还有一个刚刚有雏形的课题,五维和五维以上流型中三角形解剖猜想。
“你是群论方面的专家,如果有兴趣,我想请你负责群论相关的内容,我来负责几何相关,我们合作来完成这个猜想。”
亚历山大也是八五后的,在80后纷纷才开始展露峥嵘收割奖项的时候,他本来不用这么着急的,可谁让先出了一个舒尔茨,又又来了一个90后,让所有85后的青年数学家都有了急迫感。
洛叶没有答应也没有拒绝,只是道,“我考虑考虑。”
亚历山大也没有觉得意外,现在他已经知道洛叶来斯坦福是和他的一个师兄为了搞定acc猜想,都是研究几何相关的,他自然知道这个猜想的难度,洛叶不一定有时间。
晚上的时候,舒尔茨新邮件又来了。
他在接连发表了两篇和霍奇猜想理论相关的内容后,他并没有停下自己的脚步,又开始进一步的来研究。
而此时他被高阶grd猜想困扰住了。
“……它让我们的工作不得不陷入停滞期,我想我要重新开始继续研究y猜想来转化下思维,至少它只是一个智力游戏,而不必有复杂和简单之间的变换。”
能让舒尔茨都感觉到些许挫败