就爱耽美 > 强强耽美 > 数理王冠 > 分卷阅读391

的时间差不多, 可是这篇论文可没有球行堆体幸运, 《美国数学会杂志》作为和《数学年刊》并列的期刊, 审稿期也同样的漫长,洛叶没有真的等待一年已经算是幸运的了。

这还要对亏她最近在数学界越来越响亮的名字,让编辑在浩瀚的论文中发现了这篇位于几个月前投递的论文,所有信息都对上后就发给了审稿编辑, 而审稿编辑也正是因为洛叶最近的存在感而飞快的审核过了这篇论文。

——而在这篇论文发表后, 洛叶和舒尔茨的之间的差距肉眼可见的缩小了。

任意维度小设计猜想证明虽然没有球形堆体影响范围来的大,可是这也是群论当中一个重要猜想,甚至是不止抽象代数,对低维拓扑学也意义非凡,可以顺势解决许多问题,《美国数学会杂志》刊登这篇论文就足以说明问题了。

在一些盘点的论文上, 洛叶和舒尔茨的调查支持率已经要持平了。

从这些数据来看,两人之间似乎充满了□□味,可实际上他们两个人还维持着友好关系,一个奖项而已,从现在来看,拉马努金奖他们早晚都会获得的,根本不差这一年。

而洛叶知道舒尔茨关于y猜想的进度已经进展了一大步,在之前的牛津大学会议上,不止是洛叶,就是舒尔茨也得到了一些灵感,让他在回到波恩大学后,进度一直很顺利。

而舒尔茨也知道洛叶关于高阶grd猜想工作进展不错,这还是洛叶从舒尔茨那里得到的灵感,而这两个猜想其实也有一定的相似性,都是几何数论相关的,有了之前的合作,两人再次进行就更加得心应手了。

“……基本上可以分为三种基本构造,平坦的,类似于球面的正曲率和马鞍状的负曲率,给出任何的一个代数几何的空间,用这三种基本的构造都可以把它构建出来。”

洛叶一点点的完善自己的论文内容,几乎对外界的事情充耳不闻。

而这时,唐纳森筹备已久的论文发表了,还是关于代数几何中acc猜想——代数几何可是数学研究工作中的热门,里面汇集了最聪明的脑袋,想要出头很难,可是如果真的做出了成绩,那凭借代数几何在世界范围内的影响力,可以轻易的获得关注度。

唐纳森就是如此。

他在这篇论文中付出的心血只有他自己知道,为的就是这一刻,在这篇论文发表的那一刻,他就和上半年的洛叶一样,名气飞快的传遍了全球,成了今年又一个新崛起的青年数学家,让世界记住了这个来自于俄罗斯的年轻数学家。

可他获得关注可不如洛叶,因为洛叶目前发表的两篇四大论文都是单独署名,完全由她独立完成,之前还有abc猜想事件加成,而唐纳森这篇论文,第一作者是他和洛叶共同署名——洛叶虽然没有在这上面费多少功夫,但那是因为这个领域她太熟悉了,她做起来并不费功夫,她完成了其中三个关键工作,署名在唐纳森之后,那也是名至实归。

两个作者联名,自然分薄了其中的荣誉,况且洛叶目前的名气可比他之前的默默无闻要强,他们只会认为洛叶在这篇论文中做出了几乎和他相当的贡献。

而这篇论文还不算完,今年似乎要注定被载入史册一样,斯坦福的另一名学生,亚历山大接连发表了两篇论文,成为唐纳森之后又一个备受关注的青年人,而他同样也是代数几何领域,让人感慨代数几何领域真的人才倍数,让人不羡慕都不行。

而这不是重点,重点是亚历山大的其中一篇论文,也是和洛叶联合发表的,而在这篇论文中,洛叶是第一作者,而他只是第二作者——

在亚历山大重点完善自己独立构思的那篇论文后,从牛津大学会议回来的洛叶灵感爆棚,又想着尽快去做自己的硕士论文,速度飞快的完成了那篇论文,剩下的那一点工作由亚历山大收尾,可是这点工作不足以让他成为第一作者。

而这篇论文是关于低维拓扑的三角形解剖猜想,洛叶直接用一个简单至极的方法否决了这个猜测的正确性,证明了这个猜想完全是错误的,推翻了以这个猜想为基础的一众论文。

——这当然比不上推翻黎曼猜想带来的影响力,毕竟黎曼猜想到现在历史已经有了数百年,在黎曼猜想正确的前提下建立的科学研究太多,如果推翻可以说小半个数学界要重新洗牌了,可好歹也算是一个比较重要的猜想,洛叶彻底证明了它的错误性,这让全球今年准备以此为课题准备论文毕业的学生全都要推翻重写。

这篇论文没有发表在四大上,但是也是在次一级的期刊上,刚刚一发表就引来了许多的引用。

正因为这两篇论文的接连发表,洛叶的存在感再次强烈了起来,和舒尔茨之间的□□味似乎更浓了——在某些论坛和媒体上,她的支持率已经超过了最近毫无动静的舒尔茨。

而在旁人看来,接连发表论文的洛叶似乎对今年的拉马努金势在必得,仔细盘点洛叶到现在发表的论文——两篇四大,全是独立署名,五篇次一级期刊。b


状态提示:分卷阅读391
本章阅读结束,请阅读下一章
回到顶部
http://www.520dus.com/txt/xiazai187638.html